Notes on Banach space, VII. Compactness of function spaces
نویسندگان
چکیده
منابع مشابه
Compactness in Vector-valued Banach Function Spaces
We give a new proof of a recent characterization by Diaz and Mayoral of compactness in the Lebesgue-Bochner spaces L X , where X is a Banach space and 1 ≤ p < ∞, and extend the result to vector-valued Banach function spaces EX , where E is a Banach function space with order continuous norm. Let X be a Banach space. The problem of describing the compact sets in the Lebesgue-Bochner spaces LpX , ...
متن کاملcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولOn the character space of Banach vector-valued function algebras
Given a compact space $X$ and a commutative Banach algebra $A$, the character spaces of $A$-valued function algebras on $X$ are investigated. The class of natural $A$-valued function algebras, those whose characters can be described by means of characters of $A$ and point evaluation homomorphisms, is introduced and studied. For an admissible Banach $A$-valued function algebra...
متن کاملFunction spaces and compactness
It is useful to treat real-valued functions (or complex-valued functions, or vector space-valued functions) as elements of a vector space, so that the tools from linear algebra can be applied. Given a set X one may consider the vector space R of all real-valued functions with domain X. If X is finite, say with n elements, then this is just the familiar vector space R. The more interesting examp...
متن کاملMatrix multiplication operators on Banach function spaces
Let (Ω,Σ,μ) be a σ -finite complete measure space and C be the field of complex numbers. By L(μ ,CN), we denote the linear space of all equivalence classes of CN-valued Σ-measurable functions on Ω that are identified μ-a.e. and are considered as column vectors. Let M◦ denote the linear space of all functions in L(μ ,CN) that are finite a.e. With the topology of convergence in measure on the set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1943
ISSN: 0386-2194
DOI: 10.3792/pia/1195573359